
 

VISION-BASED LOCALIZATION FOR THE MSR SAMPLE TRANSFER ARM 

Marcos Avilés(1), David Savary(2), Augusto Gómez(3),  Marco Mammarella(4), Andrea Rusconi(5), Francesco 

Villa(6), Guido Sangiovanni(7), Davide Nicolis(8) 

 
(1) GMV Aerospace and Defence SAU, Spain, Email: maaviles@gmv.com 
(2) GMV Aerospace and Defence SAU, Spain, Email: dsavary@gmv.com 

(3) GMV Aerospace and Defence SAU, Spain, Email: augusto.gomez.e@gmv.com 
(4) GMV Aerospace and Defence SAU, Spain, Email: mmammarella@gmv.com 

(5) Leonardo SpA, Italy, Email: andrea.rusconi@leonardo.com 
(6) Leonardo SpA, Italy, Email: francesco.villa01@leonardo.com 

(7) Leonardo SpA, Italy, Email: guido.sangiovanni@leonardo.com 
(8)ESA/ESTEC, The Netherlands, Email: Davide.Nicolis@ext.esa.int 

 

 

ABSTRACT 

This paper presents the design, development and initial 

test results of the vision algorithms involved in the 

autonomous operations of the Sample Transfer Arm, 

responsible of transferring the sample tubes from the 

Perseverance and Mars terrain to the Mars Ascent 

System, as part of the Mars Sample Return campaign. 

These algorithms, integrated in a dedicated EGSE 

replicating the lander processor and operating the arm, 

will be used for its validation in Europe before delivery 

to NASA/JPL for its integration in the lander. 

1. INTRODUCTION 

The NASA/JPL led Mars Sample Return Campaign 

(MSR) is a response to the long-running scientific 

objective to better understand Mars. By acquiring and 

returning to Earth a rigorously documented set of Mars 

samples, scientists will have access to the full breadth 

and depth of analytical science instruments available in 

terrestrial laboratories. 

The Mars Sample Return - Sample Transfer Arm (STA) 

is one of the ESA contributions to the MSR Campaign. 

The STA will transfer the sample tubes from the 

Perseverance rover and from Mars terrain. Once the 

rover has returned to its parking location near the 

lander, the STA on-board the lander will then transfer 

the sample tubes from the parked rover into the Orbiting 

Sample container (OS) located inside the Mars Ascent 

System (MAS).  

The STA will also be used to close and secure the OS 

lid after the completion of the tube transfer operations. 

Due to mission constraints, all these functions need to 

be performed within a limited period of time, which 

requires a high level of autonomy. The vision 

algorithms that will be running on the lander on-board 

processor are key elements to this autonomy, since they 

will allow an accurate localization of the target elements 

to be manipulated by the STA. 

The overall mission involving the STA is summarized 

in Fig. 1. Grey tasks are those that involve Vision-

related functions. 

 

Figure 1. STA Mission operations 

This paper focuses on the design, development and 

initial test results of the various vision algorithms 

involved in the process. More specifically, vision-based 

solutions for the following scenarios are presented and 

described: 

• Localization of the Perseverance Bit Carousel, from 

where the STA will collect the samples collected by 

the rover. 

• Localization of sample tubes on the terrain left by 

the Sample Recovery Helicopters in the proximity 

of the lander. 

• Localization of the OS, where the sample tubes will 

be inserted by the STA. 

• Localization of the OS lid, to be placed onto the 

OS. 

• Localization of the Workbench, where the tubes are 

temporarily placed to switch the STA end effector 

grip type. 

2. VISION-BASED LOCALIZATION 

Due to the uncertainties in the positions of the different 

elements to be operated by the STA (the OS might have 

moved slightly during the landing, the position of the 

Perseverance is computed from cameras in the lander, 

etc), vision-based localization is performed 

incrementally. This allows a safe approach of the STA 

to the target minimizing the risk of collision while also 

maximizing the accuracy at the point of operation. More 

specifically, localization is performed at three different 

points (see Fig. 2): 



 

• Far Viewpoint. Based on a (ground-based) teach 

point location. Used to compute a more accurate 

estimation that allows a safer approach to the target. 

• Intermediate Viewpoint. Based on the previous 

estimate, the arm can safely get closer to the target 

within the limits of the accuracy of the previously 

computed pose. 

• Close Viewpoint. Based on the already accurate 

estimate obtained at the medium point, the arm 

moves as close as possible to the target to compute 

the final and most accurate estimate which will 

guide the last movement before switching to active 

compliance. 

 

Figure 2. Progressive localization approach to the 

target. 

We now describe the algorithms for the different 

scenarios, starting from the general and initial stage of 

preprocessing, which is executed before the actual 

localization algorithms are called. 

2.1. Preprocessing 

The preprocessing stage is responsible of doing the 

necessary steps to provide the different vision 

algorithms with suitable images. This includes the 

evaluation of the exposure time, the acquisition of 

multiple images with different integration times, and 

finally, the computation of a High Dynamic Range 

(HDR) image which is then tonemapped to fit it into the 

lower dynamic range of the vision algorithms while also 

retaining local contrast. After that, the lens distortion is 

corrected from the tonemapped image. 

 

Figure 3. Preprocessing steps 

The sequence of steps is summarized in Fig. 3 and 

described below: 

• Exposure Evaluation: Before any of the different 

localization algorithms is executed, the images 

acquired by the camera are first evaluated for a 

proper exposure that enables an optimal processing 

of the vision algorithms. An automatic auto 

exposure step is first performed, estimating an 

exposure time thighlight, to ensure that no clipping 

exists in the highlights (or, more specifically, that 

only small fraction of pixels is clipped). The same 

image is then evaluated to check if no clipping is 

happening in the shadows (or that only a small 

fraction of pixel is clipped). If significant shadow 

clipping is happening, then a new exposure time 

tshadow is computed to prevent this issue. Then a 

sequence of intermediate exposures going from 

tshadow to thighlight with exposure times progressively 

incremented in steps of x4 (which corresponds to 

+2EV) are taken. 

• Flat Field Correction: Flat Field Correction (FCC) 

is the process where irregularities in pixel values 

are corrected by multiplying each pixel value by a 

factor that uniformizes the brightness across the 

image. In our case, FFC is used to correct the 

vignetting caused by the camera lens. 

• HDR Merge: By using different exposure 

parameters on the same scene, a wider dynamic 

range can be represented and then merged into an 

image with better dynamic range. The stability of 

the arm and the static environment also simplifies 

the process as no alignment step between the 

images acquired at different exposure times is 

required. HDR merging is performed by taking the 

well-exposed pixels (neither saturated nor clipped) 

of a set of images with different exposures and 

combining them to obtain a single HDR output 

image.  

• Tonemapping: Once the HDR image has been 

produced by combining multiple exposures, a tone 

mapping step is executed. Tone mapping reduces 

the dynamic range of the entire image while 

retaining local contrast. This allows a more natural 

graduation that fits into the more limited range of 

the vision algorithms. 

• Lens Distortion Correction: The lens distortion 

correction component compensates the deformation 

introduced by the camera lens that makes the 

projection no longer being rectilinear. 

2.2. Localization of the Perseverance Bit Carousel 

Fig. 4 shows the functions involved in the localization 

of the Perseverance Bit Carousel. The method detects 

concentric circles, corresponding to the Bit Carousel 

fasteners, and uses them as features to solve the 

Perspective-N-Point problem and obtain the 6D pose of 

the Bit Carousel with respect to the camera.  

 

Figure 4. Steps of the Bit Carousel localization. 

The different functions in which the method is divided 

are described below. 



 

2.2.1. Feature Detection 

The proposed feature detection method for the Bit 

Carousel scenario looks for concentric circles on the 

image corresponding to the bolts fixing the structure to 

the Perseverance. The method binarizes grayscale 

images using a locally adaptive threshold where the size 

of the mask (i.e. local neighbourhood) is set according 

to the radius of the circle. Then, the centroids of black 

and white regions are computed and matched according 

to their Euclidean distance. A concentric circle is 

detected if the radii of a pair of black-white regions, 

which is proportional to the square root of the area, 

fulfils a set of constraints given by the expected size of 

the bolt in pixels. Fig. 5 shows an example of the 

proposed method where the centre of the bolts is found. 

 

Figure 5. Detected bolts in the Bit Carousel 

2.2.2. Feature Matching 

The feature matching method used for the Bit Carousel 

scenario consists of three stages: Modelling, Model 

Fitting and Feature Assignment. 

In the Modelling stage, a 2D model of the Bit Carousel 

features is computed. A model consisting of the Bit 

Carousel bolt centres in an arbitrary reference frame set 

at its central point is obtained from a 3D model of the 

Perseverance. An image reprojection of the model is 

computed for the (inaccurate) initial estimation of the 

Perseverance location. The resultant points are 

transformed into polar coordinates and used to find a 

best-fit circle by solving for the circle equation through 

least squares minimization. The reprojected point that 

best fits the circle (i.e. with a smaller residual error) is 

chosen as a reference point and used to normalise the 

magnitude of the polar coordinates for all points. The 

resulting Bit Carousel feature model includes the polar 

coordinates of all reprojected points corresponding to 

the bolts with normalised magnitude respect to a 

reference point. 

In the Model Fitting stage, a suitable image reprojection 

of the Bit Carousel feature model is found from a set of 

observed data, i.e. the detected features. A Random 

Sample Consensus (RANSAC) approach was adopted to 

cope with the feature detection method missing some 

features or detecting others that were not considered in 

the model, i.e. outliers. 

In the first step, a sample subset is randomly selected 

from the detected features. A circle fit is performed 

similarly as described above (i.e. through Least Squares 

minimisation) using only the elements of this sample 

subset. Then, the estimated model parameters, centre 

and radius, are used to instantiate a Bit Carousel 2D 

model from the Bit Carousel feature model obtained in 

the Modelling stage. In the second step, the algorithm 

checks consistency between the instantiated Bit 

Carousel 2D model and the rest of the detected features. 

Detected features are considered outliers if they do not 

fit the instantiated 2D model within some error 

threshold. The procedure repeats iteratively these two 

steps until the mean absolute error is below a threshold 

or a maximum number of iterations is reached, keeping 

the best solution that satisfies a minimum number of 

inliers criteria. 

In the Feature Assignment stage, the proposed method 

finds correspondences between the detected features and 

the points of the instantiated Bit Carousel 2D model 

obtained in the Model fitting stage. The optimal 

assignment problem is solved using the Kuhn–Munkres 

algorithm [8] where the tasks are the detected features, 

the agents are the points of the instantiated Bit Carousel 

2D model obtained, and the cost is their Euclidean 

distance. The method minimises the cost by assigning 

one agent to each task and, thus, matching all detected 

features. 

2.2.3. Pose Estimation 

The pose estimation method solves the Perspective-N-

Point (PnP) problem using the method in [5]. This 

method is able to estimate the pose of the camera given 

a relation between a set of 3D points in an arbitrary 

coordinate frame and their respective location in the 

projected 2D plane of the image. The method exploits a 

projective imaging model and automatic mechanisms 

for pose initialization and convergence. Thus, the 

relative pose between the Camera and the Bit Carousel 

is obtained. 

This method is heavily dependent on the precision of 

the 3D points, as these 3D points are the reference for 

the estimated camera pose. In the case of the Bit 

Carousel, this means that the positions of the bolts used 

as the 3D model to solve the PnP should be precisely 

known. However, only the yellow parts shown in Fig. 6 

are static while the rest of them can rotate around the 

longitudinal axis at the centre of the Bit Carousel, 

resulting in a possible uncertainty in the position of the 

bolts located in the inner ring of the Bit Carousel. For 

this reason and to improve the accuracy of the estimated 

pose, only the static subset of bolts located on the outer 

ring of the Bit Carousel is used to solve the PnP 

problem. However, the non-static bolts are still used in 

the feature matching step, as they provide valuable 



 

information to avoid errors while matching detected 

bolts to the projected 2D model. 

 

Figure 6. Bit Carousel diagram representing the static 

(blue) and dynamic (yellow) parts. Perseverance image 

courtesy of NASA/JPL. 

The position of the glove within the Bit Carousel is also 

subject to additional mechanical errors. This means that 

on top of the positioning error with respect to the Bit 

Carousel, the error of the glove with respect to the Bit 

Carousel shall be added. To minimize this impact, a 

final stage of refinement in the tangential plane (there is 

little observability in the normal direction) is added. The 

algorithm relies on detecting the circles that can be seen 

on the glove of the RGA. In a first step, the RGA model 

is reprojected for the (inaccurate) pose of the 

Perseverance Bit Carousel. In a second step, each one of 

the reprojected circles of the model is matched in an 

iterative process with the closest detected feature that is 

yet to be matched. All matched circles whose centres 

exceed a certain distance are discarded. 

After matching the reprojected model with the detected 

features, the centre of the glove is located. The pixel 

coordinates of the detected RGA centre are then 

subtracted from the previous estimation of the Bit 

Carousel centre to compute the pixel shift needed to 

alight the STA with the RGA. This pixel shift is then 

translated to distance using the intrinsic parameters of 

the camera and the depth estimation of the STA pose 

with respect to the Perseverance Bit Carousel. 

2.3. Localization of the OS Container 

The main functions involving the localization of the OS 

Container are depicted in Fig. 7. It follows a similar 

strategy to the localization of the Bit Carousel. In this 

case, rather than detecting the fasteners, the goal is to 

detect the OS slots. 

 

Figure 7. Steps of the OS localization. 

The detection of the slots allows estimating the relative 

pose of the camera with respect to the OS. However, 

inserting the RGA in certain slots may cause the OS 

container to be occluded as the STA approaches the 

target. For instance, when inserting an RGA in the slots 

at the top of the OS container multiple slots can be 

occluded by the STA. In these cases, the STA 

orientation is chosen to minimise occlusions. For 

instance, for the slots at the top if the OS, the STA will 

approach the OS container upside-down in a way that 

no slots become occluded (see Fig. 8) 

  

Figure 8. Insertion in the first slot. Left, without rotation 

of the arm; right, rotating the arm to maximize visibility 

of the OS. 

2.3.1. Feature Detection 

The feature detection method looks for circular features 

corresponding to the OS Container slots and the inserted 

RSTAs. Interestingly, the use of features corresponding 

to the inserted RSTAs was found to help the OS 

Container calibration, especially in cases where most of 

the slots contained RSTAs.  

A batch of circular features is obtained using the ED 

Circles algorithm [1], which relies on a contiguous set 

of edge segments detected using [12]. The resulting 

batch often produces more features than needed as the 

OS container itself has a range of circular parts such as 

bolts or plates, and the inserted RSTAs can have a 

circular appearance when inserted. 

To cope with these issues, the circular features in the 

batch are grouped using Density-based spatial clustering 

of applications with noise (DBSCAN) method [3]. It is a 

non-parametric clustering which allows coping with the 

variable number of slots, e.g., caused by occlusions or 

missed detections. 

However, the cluster centroids are not always a good 

representation of the slot centre. The cluster feature that 

corresponds to the circle with a greater radius was found 

to be the most robust solution to the corresponding slot 

centre and, therefore, that criterion was used to choose 

the resulting features. 

Fig. 9 shows the result of the slot detection. Blue lines 

correspond to the circles which have been detected but 

were discarded as slots. Yellow lines correspond to the 

circles which have assigned as slots (after clustering) 



 

 

Figure 9. Detected (yellow) and discarded (blue) slots 

2.3.2. Feature Matching 

The Feature matching method used in the OS Container 

scenario is similar to the method presented in Section 

2.2.2 for the Bit Carousel scenario. The main variations 

of this method are in the Model Fitting stage, where 

additional constraints are imposed to resolve possible 

indeterminations that can arise due to the OS Container 

geometry and expected camera perspective. 

2.3.3. Pose Estimation 

The Pose estimation method used in the OS container 

scenario is also similar to the one described in 2.3.3. 

The method again solves the PnP using the method in 

[5]. A 3D model of the OS carousel slot centres and the 

detected/matched features are used to obtain the relative 

pose between the camera and the reference frame in 

which the model is defined. In this case all matches 

between the 3D model and the detected features 

obtained during the matching step are used to estimate 

the camera pose. 

2.4. Localization of the Sample Tubes in the Martian 

Terrain 

Computing the RGA’s pose from a single image is a 

challenging problem and could not allow fulfilling the 

accuracy requirements due to a lack of observability. 

The STA is mounting a monocular camera, which 

imposes observability limitations in depth perception, 

particularly for the inclination over the terrain and the Z 

distance.  

Furthermore, no clear distinct features can be 

determined which could be detected in the image and 

matched against corresponding 3D features in the 

model. Previous works on a similar problem [6][11] 

showed that the pose determination based on keypoints 

extracted from the RGA might not be robust enough. 

A multi view capture from different camera orientations 

is proposed to overcome these limitations and to provide 

a feasible solution for the 5DOF pose estimation of the 

RGA (the sixth degree of freedom, the rotation of the 

RGA along its longitudinal axis, is not required for its 

grasping and later operations). The set of images is 

captured as rotations around the projection over the 

terrain of an approximate RGA main axis. The accuracy 

of this knowledge does not influence the accuracy of the 

pose estimation (only a rough indication is required to 

acquire the images from meaningful viewpoints). 

The number of views required and the angle between 

them is linked to the accuracy of the arm telemetry. 

The algorithm pipeline is shown in Fig. 10. 

 

Figure 10. Steps of the RGA localization. 

2.4.1. RGA Segmentation 

The first step to compute the 5DOF pose is to segment 

the RGA in each one of the different acquired views. 

The segmentation step is performed by a custom deep 

learning model, which can cope with a wide range of 

poses and illumination conditions. The developed model 

is based on the popular U-Net convolutional neural 

network and consists in an encoder-decoder solution 

that produces a binary mask from a single 1-channel 

grayscale image. The main difference between the 

original U-Net [9] architecture and the developed model 

is that the encoder section of the network was replaced 

by an image classification encoder pretrained with the 

ImageNet [10] dataset. 

The model was trained with real images of RGAs on 

simulated Mars environments, as well as computer 

generated scenes. This hybrid training approach has the 

big advantage of allowing the model to learn the shape 

of the RGA with many synthetic images while also 

ensuring a good performance with real images that are 

much more time-consuming to acquire. To further 

reduce the time invested in creating the dataset of real 

images, the ground truth mask generation was semi-

automated using the Segment Anything [4] model, 

which requires an initial input and is much more 

computationally expensive than the developed solution. 

The hybrid training approach, together with a data 

augmentation pipeline containing random flips, 

rotations, and perspective transformations achieves 

good performances with only hundreds of real images 

and a relatively compact model of 5.5 million 

parameters. 

Fig. 11 shows an example of the segmentation function 

applied on an image of a real RGA placed on a sandbox. 

Note how the projected shadows (recreating those 

projected by the STA) are correctly handled and the 

RGA is accurately segmented. 



 

  

Figure 11. Example of the RGA segmentation function. 

2.4.2. 2D Pose Estimation 

Once a segmentation mask has been obtained, the next 

step is to estimate its centre (or another arbitrary point at 

a known distance from the RGA endpoints) and 

clocking angle. 

The approach followed is to register the extracted 

segmentation mask into a single object with the shape of 

an RGA. It is based on Iterative Closest Point (ICP) [2] 

algorithm with a binary model of the RGA. 

This method minimizes the distance between 

corresponding cloud points, computing the best 

alignment between the extracted mask and the object 

position. This also allows for removing false positive 

blobs and segmentation mask defects while preserving 

the shape of the RGA.  

The reference mask of the RGA is computed based on 

an initial guess of the distance from the camera. To cope 

with the error of this guess, the ICP is iterated with at 

slightly scaled versions of this distance to get the best fit 

with the model. 

Figure 12 shows the result of the registration process 

and how the centre and clocking angle is derived. The 

left image depicts the generated reference image based 

on the knowledge of the RGA shape and the distance to 

it. The centre (or more specifically, the grasping point) 

is also shown, as well as the main RGA direction. The 

right image shows the result of registering this reference 

mask with the mask obtained during the segmentation 

step described before. The result of this registration is 

the estimated grasping point and direction (clocking 

angle) of the RGA in the image acquired by the camera. 

 

Figure 12. Left, reference mask with grasping point and 

main direction; right, result of registering the 

segmented mask with the reference. 

2.4.3. 3D Pose Estimation 

Coupling the RGA position and heading on the image 

plane for the different images (and the camera intrinsic 

calibration) with the telemetry from the robotic arm at 

the different captures it is possible to perform a multi-

view reconstruction and compute the 5DOF RGA pose. 

The RGA centre point is computed by intersecting the 

vectors from each of the camera positions to the centre 

point. Note that these two lines do not necessarily cross 

exactly at a 3D location, hence it is possible to perform 

a sanity check. If the minimum distance between two 

lines exceeds a certain distance, an alarm can be raised 

meaning that either the RSTA detection might not be 

good, or the telemetry of the robotic arm is not correct. 

On the contrary, if the minimum distance between the 

lines is small enough, the 3D point that minimizes the 

distance between the lines is chosen as the RGA centre 

point. 

The 3D axis of the RGA is computed by intersecting the 

planes that contain the RGA centre point, its main 

direction and each of the camera locations (provided by 

the robotic arm telemetry).  

Fig. 13 illustrates the process of estimating the 5DOF 

pose based on 2D estimates. 

 

Figure 13. 5DOF Pose Estimation 

2.5. Localization of the OS Lid and Workbench 

The localization of both the OS Lid and Workbench will 

be performed using visual markers. The type and 

disposition of these elements is still being defined by 

NASA/JPL, taking into account the available space and 

the accuracy requirements. 

3. RESULTS 

The testing and evaluation of the algorithms have been 

performed using synthetic images. This allows to more 

easily recreate different environmental conditions (such 

as illumination), OS occupancy, camera configurations, 

etc. The potential drawback of using synthetic imagery 

is related to the quality and representativeness. 

To reduce this gap, we opted for using computer 

graphics software implementing accurate global 



 

illumination algorithms. Special effort was also put to 

properly define the materials of the 3D models. A 

commercial 3D model of the Perseverance was used to 

provide a good starting point for the entire environment 

and for the rover. Then, the Bit Carousel of this model 

was replaced with the CAD model provided by 

NASA/JPL. The materials of the Bit Carousel were then 

adjusted (the CAD model did not have any appearance 

attributes) to match the sample images taken in the 

clean room provided by NASA/JPL. Fig. 14 shows a 

sample rendering of the rover in a Mars-like 

environment and already with the realistic Bit Carousel 

model integrated. 

 

Figure 14. Rendering of the Perseverance rover already 

integrating the Bit Carousel CAD. 

Lens distortion was also simulated following the profile 

provided by camera manufacturer based on their lens 

design. All possible illumination directions have been 

considered, covering the entire upper hemisphere to 

ensure any eventual impact of the Sun direction and 

shadows was analyzed. 

3.1. Bit Carousel Localization 

Table 1 summarizes the accuracy of the Bit Carousel 

localization in camera frame and obtained at different 

distances (corresponding to the Far, Intermediate and 

Close Viewpoints). Note that the distances are given 

from the arm end-effector to better understand how 

close or far is the arm from the target. From a vision 

point of view, the camera is placed backwards 

approximate 27 cm from the end effector. 

Table 1. Localization errors at different distances from 

the STA End Effector 

Component 50 cm 10 cm 3 cm 

Trans X [mm] 0.266 0.065 0.049 

Trans Y [mm] 0.412 0.155 0.14 

Trans Z [mm] 0.754 0.328 0.412 

Trans Mag [mm] 0.830 0.331 0.409 

Rot X [deg] 0.234 0.104 0.067 

Rot Y [deg] 0.121 0.049 0.189 

Rot Z [deg] 0.043 0.024 0.022 

Rot Mag [deg] 0.414 0.287 0.201 

 

The largest translation errors are obtained in the Z 

component (the depth) whereas the largest rotation 

errors are obtained in the X and Y components. This is a 

typical behaviour of 3D from 2D problems where there 

is much higher observability in the camera plane (XY 

translations and Z rotations) than in the depth (Z 

translations and XY rotations). 

The translation error at 3 cm is slightly higher than at 

10 cm. The disappearance from the FOV of a few 

fasteners in the bottom part introduced a small bias in 

the depth estimation. Rotation error is however better at 

3 cm. It is also important to remark that above values 

are under a perfectly calibrated camera. Due to thermal 

variations (and even if the STA camera is planned to be 

calibrated over the temperature), the final accuracy of 

the vision will be slightly lower. 

3.2. OS Localization 

Table 2 shows the error of OS localization algorithm at 

the different distances. In this case, they are given from 

the tip of the grasped sample tube to the OS. The 

camera is placed approximately 47 cm from the tube tip. 

The impact of targeting at different slots of the OS is 

negligible due to the rotation applied to the arm (see 

Section 2.3) to maximize observability. The occupancy 

level of the OS (whether is empty or full of RSTAs) 

also has little effect. The results, nevertheless, are 

provided for the worst-case configuration. 

Table 2. Localization errors at different distances from 

the STA End Effector 

Component 50 cm 10 cm 1 cm 

Trans X [mm] 0.234 0.042 0.035 

Trans Y [mm] 0.330 0.200 0.089 

Trans Z [mm] 6.557 1.261 0.532 

Trans Mag [mm] 6.501 1.240 1.263 

Rot X [deg] 2.835 0.733 0.690 

Rot Y [deg] 2.246 1.547 0.775 

Rot Z [deg] 0.173 0.092 0.109 

Rot Mag [deg] 4.861 1.659 1.164 

As in the Bit Carousel calibration, the largest translation 

errors are obtained in the Z component, whereas the 

largest rotation errors are obtained in the X and Y 

components. Again, this is a typical behaviour of 3D 

from 2D problems. 

Errors are larger than in the Bit Carousel calibration. 

This is because both to the camera is further from the 

target (approximately 20 cm further) and because the 

OS is smaller than the Bit Carousel, which means that 

the features are more concentrated in the centre of the 

FOV and not spread over the entire image, which 

reduces the observability. 

Sensitivity to the accuracy of the initial guess has also 

been studied, showing that the algorithm is robust to 



 

several degrees (15 deg) in orientation and several 

centimetres (~15 cm) in translation. 

3.3. RGA Localization 

Testing of the RGA Localization is still an on-going 

activity at the time of writing. The segmentation step 

has been widely tested using both synthetic and real 

imagery of an almost flight model RGA provided by 

NASA/JPL (physically and visually equal to the flight 

unit and only missing some of the internal mechanisms). 

A COTS camera with equivalent characteristics (field of 

view and sensor) to the camera to be mounted STA was 

used and different specific sandboxes replicating the 

appearance of the Mars terrain were also utilized. 

Furthermore, to confirm the robustness of the trained 

model, many more images taken with a mobile phone 

(and, naturally, never used in the training) were also 

tested. In all cases, the quality of the estimated mask 

was very high, leading to very accurate segmentations. 

The registration of these mask with the reference model 

resulted in accuracies better than 1mm in the estimation 

of the RGA centre in the tangential plane and less than 

0.4 degrees in the clocking angle when observing the 

RGA from approximately 40 cm from the camera. 

As already stated in 2.4, the accuracy of the 3D 

reconstructed pose of the RGA is dependent on the 

accuracy of the arm telemetry, but also on the number 

of views and angle span of such views (for instance, an 

angle span of 45 degrees results in a better estimation of 

the depth than an angle of 15 degrees). The final 

expected accuracy of STA is still being determined and 

therefore, the definition number of required viewpoints 

and angles between them is still pending to maintain the 

resulting accuracy of the RGA estimate below the 

system requirements. 

4. CONCLUSIONS AND FUTURE WORK 

The design, development and testing of the vision-based 

localization algorithms involved in the operations of the 

MSR-STA have been presented. 

The algorithms have been specifically developed to take 

advantage of the unique characteristics of each of the 

elements to be localized. For the Perseverance Bit 

Carousel, the fasteners were used as relevant features to 

be matched against a reference model and solve the PnP 

problem. A similar approach was followed for the OS 

container, but in this case, the circular shape of the 

RSTA slots was used. On the other side, the localization 

of the RGAs in the terrain needed to follow a multi-

view strategy to cope with the lower observability of the 

depth and inclination of a monocular observation and 

particular shape of the sample tube. Achieved 

accuracies are in all cases compatible with the 

requirements of autonomy for the STA operations. 

Operations involving the workbench and OS lid are still 

pending its final definition as well as the type and 

disposition of the visual markers. Once this is 

performed by NASA/JPL, the integration of the 

corresponding marker detection algorithm will be 

performed. 

Validation with real mock-ups and a COTS camera with 

similar characteristics to the one mounted on the STA is 

already foreseen in the short future. Both mock-ups of 

the Bit Carousel and OS will be provided by NASA/JPL 

to be visually almost equivalent to the flight models, to 

ensure the representativeness of the tests. 
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